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Abstract

The classical Probability Ranking Principle (PRP) forms the theo-
retical basis for probabilistic Information Retrieval (IR) models, which
are dominating IR theory since about 20 years. However, the assump-
tions underlying the PRP often do not hold, and its view is too narrow
for interactive information retrieval (IIR). In this paper, a new theo-
retical framework for interactive retrieval is proposed: The basic idea
is that during IIR, a user moves between situations. In each situation,
the system presents to the user a list of choices, about which s/he has
to decide, and the first positive decision moves the user to a new situ-
ation. Each choice is associated with a number of cost and probability
parameters. Based on these parameters, an optimum ordering of the
choices can the derived - the PRP for IIR. The relationship of this
rule to the classical PRP is described, and issues of further research
are pointed out.

1 Introduction

Interactive retrieval systems have become a commodity today. Although
there is a significant amount of research on this type of systems, the theoret-
ical foundation for this type of system is still in its infancy. Most work has
focused on cognitive issues or usability aspects. Empirical studies of complete
systems mostly focus on variations of single components.

Given this state of research, the construction of a good interactive IR
system is still a task for which there are only some guidelines concerning
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certain aspects of the system. However, for the core problem, namely per-
forming effective retrieval in such a setting, no solid knowledge is available.
The classical probability ranking principle (PRP) [Robertson 77] forms the
theoretical basis for optimizing the results of ad-hoc retrieval. On the other
hand, experiments in interactive retrieval ([Voorhees & Harman 00, Turpin
& Scholer 06]) have shown that systems performing quite differently in the
standard retrieval setting (i.e. ad-hoc retrieval for a fixed query) are indistin-
guishable when being used in an interactive setting. Further studies [Turpin
& Hersh 01] pointed out that this is due to the fact that scanning through
document lists for identifying the relevant entries is not the most crucial
activity in interactive retrieval.

In this paper, we develop a framework for extending probabilistic IR
approaches to interactive information retrieval (IIR). For that we develop an
abstract view of the functional level of an IIR system, and then derive certain
desirable properties that a system should fulfill at this level. Ultimately, this
leads us to the formulation of a PRP for IIR.

The remainder of this paper is structured as follows: First, we briefly
revisit the classical PRP and point out its shortcomings. In section 3, we
describe the basic concepts of our approach, followed by the development
of a cost model in section 4. Based on these notions, we are able to derive
the PRP for IIR in Section 5. In Section 6, we describe first steps towards
applying this theoretical framework. Section 7 gives a survey on related work,
before the final section concludes and gives an outlook on further research.

2 Motivation

The classical PRP focuses on the task of retrieving relevant documents for
a given, fixed information need. The major assumption is this model is that
the relevance of a document to a query is independent of the relevance of
other documents the user has seen before. The task addressed by the PRP
is the user’s scanning through the list of ranked documents.

Both the independence assumptions and the restriction to the scanning
task are questionable:

1. In real settings, relevance always depends on documents the user has
seen before. Besides the trivial case of duplicates (which happens fre-
quently during Web retrieval), often a user wants to find relevant doc-
uments that provide different answers to a given problem (aspectual
recall). Thus, the relevance of any additional relevant document clearly
depends on the relevant documents seen before.
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2. Interactive retrieval consists of user actions of various types, and scan-
ning through document lists for identifying the relevant entries is not
the most crucial activity in interactive retrieval [Turpin & Hersh 01].
In contrast, other activities (like e.g. query reformulation) seem to be
more ’expensive’ from the user’s point of view.

Somewhat related to the first point, there is the empirical finding (see e.g.
[O’Day & Jeffries 93]) that user information needs are not static throughout
a search, they change in reaction to the information a user has seen already.
In light of this result, relevance feedback methods can hardly work, since
they try to optimize the query formulation for an information need that is
assumed to be static; instead, we are dealing with a moving target.

So we see that the assumptions underlying the classical PRP are not
appropriate for interactive retrieval, and its focus on the result list misses
the major part of the interaction, thus yielding at best a local optimization.

3 Approach

3.1 Requirements

In order to develop a PRP for interactive IR, we aim at fulfilling the following
requirements:

• Consider the complete interaction process: Instead of focusing on doc-
ument ranking, the new approach should cover all kinds of interactions
of a user with an IR system, like e.g. browsing through lists of related
terms, categories or cluster labels, looking at summaries of varying
granularity (e.g. [White et al. 05]), or following links between docu-
ments.

• Allow for different costs and benefits of different activities: The types
of activities in IIR require different effort (e.g. selection of a proposed
expansion term may be cheaper than finding a synonym for a search
term). Vice versa, the benefit resulting from an action may also vary –
modifying a query will often have a bigger effect than declaring a single
document to be relevant.

• Allow for changes of the information need: Finally, the model should
be more dynamic than the classical PRP. In principle, any positive
information a user finds during a search may change his information
need — like e.g. in the berrypicking model [Bates 89].
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3.2 Assumptions

Like in all probabilistic IR models, our approach refers to the system’s rep-
resentation of documents and information needs (see e. g. [Fuhr 92]). Since
we are dealing with interactive retrieval here, our model refers to the sys-
tem’s knowledge about the state of the search. Thus, in contrast to cognitive
models, which may refer to certain users’ states of mind, our model can
only take into account information that is available for the system — either
through direct input by the user, or by appropriate sensors (like e. g. an
eyetracker — future systems might even observe the user’s face in order to
detect satisfaction or disappointment).

Based on the requirements listed above, we formulate the following as-
sumptions underlying our approach:

• Focus on the functional level of interaction: Although human-machine
interaction involves a variety of usability and visualization issues, we
want to restrict here to a purely functional level. That is, the same
activity (e.g. selecting expansion terms from a list) may require different
effort, depending on the actual design of the interaction. These aspects
may affect the values of certain parameters in our model, but we do
not consider this issue here.

• Decisions are the major interaction activity: As the most important
cognitive activity of the user, we focus on decision making. Thus,
we assume that the system offers binary choices to the user, who in
turn has to decide about these choices. In case the user accepts a
choice, we call it a positive decision, otherwise negative. In the positive
case, if the user does not want to modify the decision as soon as he
learns about its consequences, we call the decison ’correct’. (Without
explicit feedback from the user, however, the system will not be able to
distinguish this case from the one where the user found the resulting
information relevant and then went back to the original list in order to
check the next item.) The evaluation of choices may require cognitive
acts of various size (e.g. looking at a single proposed term vs. reading
through a full document), which is accounted for by the effort attributed
to the actual choice. Creative actions like entering a new term that
was not proposed by the system are also regarded as choices here —
obviously with a much higher cognitive effort than in the case of a
selection from an explicit list of alternatives.

• Users evaluate choices in linear order: This means that there is a
(explicit or implicit) linear order in which a set of choices is evaluated.
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Examples could be explicit linear lists, but also the set of links occurring
in a text. When there is no such order, we can split up the set of
choices so that we have linear orders within each of its subsets, and
assume that the user makes the explicit decision to move to another
subset. Also, there may be cases where no strict linear order is given
(e.g. the ’tag clouds’ used by many popular Web 2.0 sites), but the
total order considered in this paper can be used for deriving such a
partial order. There may be user interface designs where several lists
are presented simultaneously (e.g. [White et al. 05]), and the system
does not know in what order the the user evaluates these lists — unless
we use an eyetracker. As an approximation, one can assume that the
user regarded only the list where he made an explicit, positive decision,
since the system will use this information for recomputing all the lists
currently shown. Further research will be needed for validating this
assumption, or deriving better approximations in cases of incomplete
knowledge.

• Only positive, correct decisions are of benefit for a user: This is the
strongest assumption we have to make. There are many non-IR ex-
amples of decision-making where both accepting or declining a choice
have a certain benefit (because of the usually limited number of choices,
rejection implicitly means a restriction to the small set of alternative
choices). However, the spectrum of choices in IR typically is rather
large, so that the system can conclude hardly anything useful from the
rejection of a choice (e.g. even when the user has given negative rele-
vance feedback to all the documents he has seen before, the system has
no information on how to improve the query).

3.3 Situations

As an important new concept, we introduce the notion of a situation. A sit-
uation reflects the system state of the interactive search a user is performing.
In terms of our model, a situation consists of a list of choices the user has to
evaluate in this situation. The first positive decision by the user will move
him to another situation (depending on the choice he selected positively). In
order to avoid the user getting stuck in a situation, we assume that there is
always a last choice that will move him to another situation with an alterna-
tive list of choices (e.g. when the user has found no relevant document, the
system might propose terms for modifying the query or browsing of docu-
ment clusters). This ’last choice’ is not covered by our model, since we are
focusing on the order of choices, which does not affect the ’last choice’.
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From a system’s point of view, its knowledge about the user’s information
need does not change during a situation, knowledge is added only when
switching to another situation due to a positive decision. Vice versa. we can
assume the information need to be static while the user is within the same
situation, but a transition to another situation may change the information
need. By taking this approach, we implicitly also drop the PRP assumption
of the independence of relevance judgments: A positive relevance judgment
may change the information need, and thus a previously relevant document
now may become irrelevant for the user.

4 A Cost Model for IIR

4.1 Situations, choices and expected benefits

For modeling the interaction, we assume that the user moves from situation
to situation. In each situation, the user is presented a list of (binary) choices,
about which he decides in sequential order. The first positive decision moves
the user to a new situation. A decision requires some effort, and with a
certain probability, will be positive. There is some benefit from a positive
decision, provided that the decision was correct.

In each situation si , we have a set of choices Ci = {ci1, ci2, . . . ci,ni
} Then

we define pij as the probability that a user in situation si will accept choice
cij. (The precise specification of the underlying event space is given in the
appendix.)

The only independence assumption we now have to make is the following:
the probability of a user accepting a choice cij is independent of the choices
he rejected before. In most cases, this supposition will be fairly valid (e.g.
ranked list of documents, or list of expansion terms). Please note that this
assumption is much weaker than that of the classical PRP, where indepen-
dence of both positive and negative relevance judgments is assumed. With
this presupposition, we exclude any sequence effects, i.e. changing the or-
der of the choices being presented does not affect their probability of being
accepted.

Furthermore, let qij denote the probability that acceptance of this choice
is not revised later. In addition, we assume that pij > 0 for j = 1, . . . , ni (it
does not make sense to offer choices a user certainly will reject, and some of
the derivations given below are valid for pij > 0 only).

In addition to these probabilistic parameters, we introduce three cost
factors. Since we are interested in maximizing the benefit of a user, we will use
the term ’benefit’ for referring to negative costs, and specify all parameters
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as benefits. The decision about the choice cij requires the effort eij < 0. In
case of acceptance, and if the decision was right, the resulting benefit will be
bij; if the decision was wrong, the additional effort for correction is gij ≤ 0.

With these parameters, we can estimate the expected benefit of choice cij

as
E(cij) = eij + pij (qijbij + (1− qij)gij) (1)

Since we are describing a general framework in this paper, we do not
address the issue of estimating the parameters pij, qij, bij, eij, and gij here;
these parameters are specific to the underlying model and the actual design
of the user interface. In Section 6, however, we discuss some approaches for
parameter estimation.

term ni pij bij pijbij nq′ %ij

program 195 mill. 0.67 0.4 0.268 3 -0.5
blend 5 mill. 0.02 4.0 0.08 116 64
island 2 mill. 0.01 4.9 0.049 290 188

Table 1: Example: query refinement and expected benefit

As an illustrating example, assume that a user enters the term t0=’Java’
in a Web search engine, which yields n0=290 mill. hits. Now the system
proposes three terms ti for query refinement along with their number of hits
ni, as shown in table 11. As probability of acceptance, we have assumed
that pij = ni/n0 (i.e. query terms follow the same frequency distributions as
document terms); furthermore, as a rough expression of the cost of a choice,
we chose bij = log n0

ni
(as an information theoretic measure for the gain when

narrowing down from t0 to ti). Obviously, the benefit for the less common
terms ’blend’ and ’island’ is much higher than that for ’program’. On the
other hand, the expected benefit — approximated here by pijbij — is lower
for the latter. This outcome seems to be reasonable: most users will be
interested in Java programs, thus this choice should be presented first. For
a minority of users, however, the other two choices would be very helpful.

4.2 Maximizing expected benefit

In a good IIR system, the expected benefit of the choices presented to the
user should be as high as possible. As a first conclusion from eqn (1), we
can say that the expected benefit of any choice presented to the user should
be positive — otherwise the user would not gain anything from a choice.

1The columns headed nq′ and %ij are explained in Section 6.
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This condition already limits the set of choices to be presented to a user. As
an implicit consequence of this statement, choices with pij = 0 should not
occur in the selection list, since their expected benefit will be negative (due
to eij < 0).

Regarding a single choice cij, our major goal is of course the maximization
of its expected benefit. Given that the benefit bij and the backtracking effort
gij of a decision are fixed, there are three strategies for maximizing E(cij):

1. Minimizing the effort |eij|. However, this may lead to more erroneous
decisions, thus reducing the other addends of the expected benefit. So
the system should provide enough information for avoiding too many
erroneous decisions.

2. Maximizing the ’selection probability’ pij, i.e. the user should choose
cij whenever it is appropriate. At the same time, however, the ’success
probability’ qij should not drop. This can only be achieved if the user
spends more effort on the decision, which increases eij.

3. Maximizing qij by avoiding erroneous positive decisions (but keeping
pij high): Again, this will increase the user’s effort for deciding about
a choice.

Overall, we can see that the system has to find a good compromise be-
tween these three strategies in order to maximize the expected benefit.

As a simple example, assume that the system proposes some terms for
query expansion. As one possibility, only the terms themselves are listed.
Alternatively, for each term, the system could show a few example term
occurrences in their context, thus giving the user some information about
the usage of the term. The user effort per choice is lower in the first case,
but the decisions will also be more error-prone.

5 Optimum Ranking for IIR

So far, we have regarded single choices, and discussed ways for optimizing
the expected benefit of a choice. Now we consider the complete set of choices
to be presented in a situation. As mentioned above, we assume that these
choices are presented in linear order. So we have the problem of arranging
the set of choices in an optimum order — which will ultimately lead us to
the PRP for IIR.

In order to simplify the following discussion, let

aij = qijbij + (1− qij)gij
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Symbol Meaning
S set of situations
si situation
Ci set of choices in situation si

ni = |Ci| (number of choices)
cij single choice
pij probability that choice cij is accepted
qij probability that acceptance of cij is correct
eij user effort for evaluating cij

bij benefit from accepting cij

gij correction effort if cij was chosen erroneously
aij ’average benefit’ if cij is accepted

Table 2: List of symbols

denote the ’average benefit’ of a choice, thus simplifying the formula for the
expected benefit to

E(cij) = eij + pijaij

5.1 Expected benefit of a selection list

Now we assume that the set of choices Ci of a situation si is ordered in a
linear list ri =< ci1, ci2, . . . , ci,ni

>.
For computing the expected benefit for this list, we assume that the user

considers the choices in linear order, and the first positive decision will move
the user to a new situation.

E(ri) = ei1 + pi1ai1 +

(1− pi1) (ei2 + pi2ai2+

(1− pi2) (ei3 + pi3ai3+

. . . (2)

(1− pi,n−1) (ein + pinain) ))

=
n∑

j=1

(
j−1∏
k=1

(1− pik)

)
(eij + pijaij) (3)

(Here we assume that the iterative product yields 1 for the case of an empty
range.)
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5.2 Optimum ranking of selections

For discussing the optimum ranking of selections, we are regarding an arbi-
trary pair of choices cil and ci,l+1 which appear in adjacent order at positions
l, l + 1 (with 1 ≤ l < ni) in the list of choices. Then we can rewrite the
expected benefit E(ri) as follows

E(ri) =
n∑

j=1

l 6=j 6=l+1

(
j−1∏
k=1

(1− pik)

)
(eij + pijaij) + tl,l+1

i (4)

where

tl,l+1
i = (eil + pilail)

l−1∏
k=1

(1− pik) +

(ei,l+1 + pi,l+1ai,l+1)
l∏

k=1

(1− pik)

In the following, we only regard the case where pij < 1 for j = 1, . . . , l−1;
otherwise, choices cil and ci,l+1 would never be reached, and their sequence
would not matter. Now we assume that we would change the order of these
two choices; in this case, only the term tl,l+1

i in (4) changes, and let us call the
corresponding term tl+1,l

i . So the difference between the expected benefits of
these two lists is tl,l+1

i − tl+1,l
i . In order to simplify the derivation, we divide

this difference by the probability that the user did not select any of the
choices before, i.e. the product of the corresponding counter-probabilities.
This simplified difference can be transformed as follows:

dl,l+1
i =

tl,l+1
i − tl+1,l

i∏l−1
k=1(1− pik)

= eil + pilail + (1− pil)(ei,l+1 + pi,l+1ai,l+1)− (5)

(ei,l+1 + pi,l+1ai,l+1 + (1− pi,l+1)(eil + pilail))

= pi,l+1(eil + pilail)− pil(ei,l+1 + pi,l+1ai,l+1) (6)

Since
∏l−1

k=1(1− pik) is positive, the expected benefit of the original list is

not less than that of the modified list iff dl,l+1
i ≥ 0.

Now let us first regard the special cases where pi,l = 0 or pi,l+1 = 0. If
pi,l = 0 6= pi,l+1, then the difference is negative and the two choices should
be reordered in for increasing the benefit. Otherwise, if pi,l+1 = 0, then the
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difference will be nonnegative, and the choices should remain in the current
order. So these two conditions would lead to the effect that all choices with
zero selection probability would be moved to the end of the choice list (and
thus, they better should not be included in this list).

In the following, we assume that pi,j > 0 for 1 ≤ j ≤ ni. Then the

combination of the condition dl,l+1
i ≥ 0 with eqn (6) yields the following

criterion:

ail +
eil

pil

≥ ai,l+1 +
ei,l+1

pi,l+1

(7)

So we have a condition for bringing two adjacent choices into the right
order, for increasing the expected benefit of the complete choice list. By
applying this condition iteratively, and reordering two adjacent choices in
case the condition is not satisfied (similar to bubble sort), we can bring the
whole list into an order where the expected benefit is maximized.

So we can formulate our probability ranking principle for interactive in-
formation retrieval (IIR-PRP): rank choices cij by decreasing values of

%(cil) = ail +
eil

pil

. (8)

5.3 Analysis

The first interesting observation is the fact that our ranking criterion % for
a choice cij is different from its expected benefit. As a simple example,
assume that we have two choices ci1 and ci2 where pi1 = 0.5, ai1 = 10,
ei1 = −1 and pi2 = 0.25, ai2 = 16, ei2 = −1. Then we have E(ci1) = 4
vs. E(ci2) = 3. However, %(ci1) = 8 vs. %(ci2) = 12. It can be checked
that our ranking criterion indeed maximizes the expected benefit of the list:
E(< ci1, ci2 >) = 4 + 0.5 · 3 = 5.5 vs. E(< ci2, ci1 >) = 3 + 0.75 · 4 = 6. The
reason for this difference lies in the fact that the expected benefit of a list is
not just the sum of the expected benefits of the single choices (as is the case
with the classic PRP — see below), as shown in eqn (3).

Another important issue is the comparison with the classical PRP. We
can show easily that our IIR-PRP is a generalization of the classical PRP.
Let eij = C̄ < 0 (the cost for reading a document) and ail = C (the benefit
of a relevant document); substituting these values in eqn (7), we get:

C +
C̄

pil

≥ C +
C̄

pi,l+1

⇒

pil ≥ pi,l+1
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So we have the classical PRP, where documents are ranked by decreasing
values of their probability of relevance.

Although the ’probability of relevance’ pij still plays a major role in the
IIR-PRP, we see that the major extension of our new model is the consider-
ation of varying values for the effort eij and the average benefit aij, as well
as the tradeoff between these two parameters. The classical PRP minimizes
the cost of a search by ranking documents according to increasing values of
expected cost (or decreasing benefit), which is estimated as pilC + (1−pil)C̄.
In the example from above, we have shown that a ranking according to de-
creasing benefit in general is not optimum in our case. The reason for this
difference is the variability of the effort and benefit values in our model. In
case these values are constants, our model reduces to the classical PRP. In
fact, in this case our model is equivalent to the PRP for finding one relevant
document (since the first positive decision brings up a new situation), and
for this problem, the PRP is known to yield the optimum solution. For find-
ing more relevant documents, the PRP assumes that the information need
remains unchanged and that the relevance judgments of documents are in-
dependent of each other; since out approach abandons these assumptions,
we are not able to make predictions about further relevant documents (this
task is left to other, more specific models which may use certain additional
assumptions — e.g dropping only the second of these assumptions, so that
the user wants to see more relevant, but substantially different documents)

[Bookstein 83] describes a generalization of the classical PRP to multi-
valued relevance scales, where different relevance values are associated with
different cost factors. Then it is shown that optimum retrieval is achieved
when document are ranked according to increasing costs. However, in terms
of our model, Bookstein regards the term pij(aij + eij), whereas we separate
the effort for a decision from its potential benefit in case of acceptance. So
the two models are not directly comparable. Only for the binary case with
constant effort and benefit values, our model corresponds to the PRP.

Finally, readers familiar with Markov models may notice that our ap-
proach describes in fact such a model: situations correspond to states, and a
choice cil is a transition with probability pil

∏l−1
k=1(1− pik). In our approach,

we pose no restrictions on the number of situations/states: In general, each
sequence of choices c1i, c2j, . . . cmk may lead to a unique situation that can
only be reached via this sequence. Thus, we have a Markov model where the
number of possible states is infinite, but countable. Since we assume that
the transition probability is always positive (0 < pij < 1), the Markov chain
is irreducible. However, the problem is more complicated due to creative
actions of the user (like adding a term to the query that was not explicitly
proposed by the system). In terms of our model, we would represent such
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a decision by estimating the corresponding effort and its expected benefit.
Indeed, the actual benefit depends very much on the term chosen. In the
followup situation, the system knows this term, and can react appropriately.
Due to this problem, there is no straightforward way for applying more elab-
orated methods from Markov models, which aim at analyzing paths through
the model. Further research is needed in this area.

6 Towards application

As mentioned before, the work presented here forms a framework similar to
the classical PRP. Thus, it describes which parameters should be considered,
but does not specify how these parameter can be estimated. Nevertheless,
we want to outline here some directions of further research that we deem
useful for accomplishing this task.

With regard to the kind of research required, we can distinguish three
groups of parameters:

1. Selection probability pij: Many IR models are addressing this problem.
Besides the probability of relevance of documents, there are also many
approaches for computing query expansion terms, or for generating
document summaries. Thus, for most kinds of selection lists, there is
already a substantial amount of research which provides useful solutions
(or at least starting points) for estimating this parameter. However,
since most of these approaches are still based on the assumption of a
static information need, more work is required to make these models
more dynamic.

2. Effort parameters eij, gij and the success probability qij: In this area,
most research is needed. Here empirical studies with real users should
be performed, closely monitoring the users’ actions (involving eye-
tracking) — see e.g. [Joachims et al. 07]. As an additional problem,
visualization aspects may affect results heavily (see e.g. [Malik et al.
06]). Thus, this kind of research should also develop some ’best prac-
tice’ methods that serve as reference points for the parameter values
derived.

3. Benefit bij: Of course, there is the general problem of information value,
which is heavily application-dependent. Another possible definition is
that of saved effort, relative to some baseline. Below, we outline an
estimation method following the latter approach. There may be other
— even better — methods for estimating these parameters, but we
want to demonstrate that there are already solutions to this problem.
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By defining benefit as saved effort, we of course depend on the problem
of estimating the effort of certain actions. However, for quantifying benefit,
here we consider a single type of action only, namely that of scanning through
a ranked list of documents. So we assume a unit effort per document in the
rank list — the problem of scaling is to be solved in connection with the
methods estimating user effort.

The basic assumption of our method is the following: for the current situ-
ation, the system has constructed (explicitly or implicitly) the sub-optimum
query q′, and the user’s choice will now lead to the optimum query q, where
he only will have to scan the ranked list of documents. In addition, we as-
sume that the user wants one relevant document only (or only one more, in
case he has found some already). There may be many other user standpoints,
but here we regard the most simple case only.

For a given query q, [Nottelmann & Fuhr 03b, Nottelmann & Fuhr 03a]
describe methods for estimating the number rq of relevant documents in the
database as well as their proportion among the top k documents.

For the latter, we need an assumption about the retrieval performance of
the system. As a simple model, we use a linear recall-precision curve of the
form

P (R) := P 0 · (1−R) (9)

where P denotes precision, R stands for recall, and the parameter P 0 is
the initial precision to be chosen. Let nq be the position of the first relevant
document in the ranked list. For this point, we have P = 1/nq and R = 1/rq.
Substituting these values in eqn (9), we get as approximation of the position
of the first relevant document

nq =
rq

P 0(rq − 1)
(10)

So we know the effort for locating the first relevant document in the
ranking list of the optimum query q. In the current situation, however, we
are still dealing with the query q′, and we want to know how many documents
the user would have to scan in the corresponding result list until he finds
a relevant document. For that, we define the probability P(q|q′) that a
random document from the result list of q also occurs in the result list of
q′ (of course, here we would have to limit the length of the result lists in a
reasonable way — one possible approach would be the assumption of Boolean
retrieval). Based on the data available in the IR system, this parameter
can be computed easily (e.g. by retrieving the top k documents for q, and
then determining their position in the output of the current query q′). The
probability P(q|q′) obviously has a multiplicative effect on the precision, so
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that we get as modification of eqn (10) the position of the first relevant
document in the ranked list of q′ to

nq′ =
rq

P(q|q′)P 0(rq − 1)
(11)

Based on these results, the benefit for moving from q′ to q can be estimated
as nq′ − nq.

For illustration, let us return to our Java example in Table 1. Assuming
that half of the documents in which all query terms occur are also relevant,
and with an initial precision of P 0 = 0.5, we would get nq ≈ 2 in all cases. If
we estimate the values P(q|q′) based on Boolean retrieval, they are identical
to the corresponding pij value shown in the table. Using these estimates, we
would arrive at the nq′ values as shown in the second to last column, from
which we would have to subtract nq = 2 for computing the final benefit.
Assuming further that the effort for selecting a term is eij = 1, we would
arrive at the values for the ranking criterion as shown in the last column.
Obviously, this would lead to a reverse ranking of the choices; moreover, the
expected benefit eij + pij(nq′ − nq) for the term ’program’ would be negative
(−0.33), so this choice should not be shown. So it turns out that our initial
ranking for this example may not have been correct — it all depends on the
actual effort and benefit parameters.

7 Related work

The shortcomings of the classical PRP have been noticed already in [Stirling
75], where a theoretical model for considering dependencies between docu-
ments is presented. On a more practical side, [Carbonell & Goldstein 98]
describe experiments where the similarity of the top-k documents is used for
re-ranking, in order to present the most dissimilar, but potentially relevant
documents to the user. In [Chen & Karger 06], different metrics considering
dependencies between retrieved documents are regarded, and corresponding
methods for optimizing result ranking are presented.

The dynamic nature of information needs has been emphasized by several
authors following the cognitive approach to IR [Belkin et al. 82], [Borlund &
Ingwersen 98], [Ingwersen 96]; e.g. the latter asks ’to view relevance in IR as
situational, relative, partial, differentiated and non-linear’.

However, the only actual IR system following these ideas is the imple-
mentation of the ostensive model [Campbell 00], which uses a kind of ’aging’
mechanism for relevance feedback data in order to determine the next docu-
ments to be presented to the user. Moreover, this system is highly dynamic
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(partly due the task of image retrieval studied here), and each selected choice
creates a new situation (according to our terminology).

From the area of human-computer interaction, [Williamson & Murray-
Smith 04, Williamson 06] present interfaces for displaying time-varying infor-
mation; they use probabilistic predictions of user behavior and their potential
goals for arranging the information displayed to the user.

Our model is remotely related to the Page Rank model [Page et al. 98]
which also regards transition probabilities between interaction states (i.e.
page views); however, in our approach, we would consider the order in which
the different links are encountered by the user when looking through a page,
whereas the Page Rank model ignores this factor.

[White & Drucker 07] describe query trails of Web searches and their
analysis; however, this approach monitors only the positive decisions made
by the user, but not the choices they were faced with in each situation. In
contrast, the work presented in [Joachims et al. 07] uses eyetracking for
observing users during Web searches, thus registering e.g. the items from the
result list users were looking at. Along with their time measurements, this
kind of research could be a good starting point for implementing the generic
model presented here.

On a more general level, interactive IR systems as proposed here can be
seen as an instantiation of interactive computing [Goldin et al. 06] where
systems interact continuously with the user and/or their environment. Thus,
for the actual design of IIR systems, this new computing paradigm may
provide a fruitful basis.

8 Conclusion and Outlook

In this paper, we have presented a framework for extending probabilistic
IR to interactive retrieval. Based on the notions of situations and decision
making, we first have shown how the expected benefit of a single choice can
be maximized. The most important result of our paper is the derivation
of the optimum ordering of choices — the probability ranking principle for
interactive IR. We also have shown that the classical PRP is a special case
of our new model.

Similar to the classical PRP, our model uses certain parameters, but does
not specify how the values of these parameters can be estimated. This is the
subject of more specialized models (similar to the broad variety of proba-
bilistic models that are all founded on the PRP).

On the other hand, with the IIR-PRP as described here, there is a point
of reference for the development of IIR models and systems. IIR systems are
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a commodity nowadays, but the functional design of these systems lacks an
underlying theory. The work presented in this paper is a first step towards
the development of such a theory.

Acknowledgment

I wish to thank the Glasgow IR group, especially Keith van Rijsbergen, for
their hospitality and fruitful discussions when staying with them in August
2007, while I was writing this article. The suggestions by the three anony-
mous reviewers were very helpful in improving the initial version of this
paper.

A Definition of the event space

Let S = {s0, s1, s2 . . .} denote a (possibly infinite) set of situations. In each
situation si ∈ S , we have a set of choices Ci = {ci1, ci2, . . . ci,ni

} with cij ∈ S,
i.e. choices are a partial mapping c : S × IN → S. Our event space is
situation-specific, and we make no assumptions how the event space changes
when the user moves to a new situation. Let U denote all uses of our system,
and Ui ⊆ U is the set of all these uses which arrive at situation si (e.g. in a
Web search engine, all uses starting with the same query — provided that
no additional information is available — will lead to the same situation).
Now our event space is Ω = Ci×Ui. Unfortunately, we have only judgments
about a subset J ⊆ Ci × Ui of the elements of the event space — due to
the fact that the user leaves the situation as soon as he accepts a choice.
Associated with each element J , we have the acceptance decision of the user,
which can be modelled as a relation A ⊆ J ⊆ Ci × Ui. Furthermore, not all
of the accepted choices will turn out to be right from the user’s point of view
(so that he will return to situation si — which we would model as another
use). Thus, right decisions are a subset R ⊆ A of the accepted ones. The
probabilistic parameters we define now are all independent of the actual uses
— the system knowledge about the use is implicitly represented by the actual
situation. Let X denote a random variable ranging over Ω, and Z a variable
ranging over Ui. Then we define pij = P (X ∈ A|X = (cij, Z) ∧ X ∈ J) as
the probability that a use in situation si will accept choice cij.

The only independence assumption we now have to make is the following:
the probability of a user accepting a choice cij is independent of the choices
he rejected before. In most cases, this supposition will be fairly valid (e.g.
ranked list of documents, or list of expansion terms). Please note that this
assumption is much weaker than that of the classical PRP, where indepen-
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dence of both positive and negative relevance judgments is assumed. With
this presupposition, we exclude any sequence effects, i.e. changing the or-
der of the choices being presented does not affect their probability of being
accepted. More formally, the independence assumption can be written as
follows:

P

(
X ∈ A|X = (cij, Z) ∧X ∈ J ∧

∧
k:(cik,Z)∈(J−A)

Yk = (cik, Z)

)
=

P (X ∈ A|X = (cij, Z) ∧X ∈ J)

(Here the Yk’s are random variables ranging over all the choices of the same
use Z.) Furthermore, let qij = P (X ∈ R|X = (cij, u) ∧ X ∈ A) denote the
probability that acceptance of this choice is not revised later.
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